Chool of Organic Sciences and Ryan Institute, NUI Galway, Ireland) for the usage of the fluorescence microscope is gratefully acknowledged. The technical support offered by Albert Lawless to make use of this device was also greatly appreciated. Conflicts of Interest The authors declare no conflict of interest. References 1. two. Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production along with other applications: A assessment. Renew. Sust. Energ. Rev. 2010, 14, 21732. Mimouni, V.; Ulmann, L.; Pasquet, V.; Mathieu, M.; Picot, L.; Bougaran, G.; Cadoret, J.P.; Morant-Manceau, A.; Schoefs, B. The possible of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr. Pharm. Biotechnol. 2013, 13, 2733750. Simopoulos, A.P. The significance of the ratio of omega-6/omega-3 vital fatty acids. Biomed. Pharmacother. 2002, 56, 36579. Simopoulos, A.P. The importance on the omega-6/omega-3 fatty acid ratio in cardiovascular illness and other chronic diseases. Exp. Biol. Med. 2008, 233, 67488. Worm, B.; Hilborn, R.; Baum, J.K.; Branch, T.A.; Collie, J.S.; Costello, C.; Fogarty, M.J.; Fulton, E.A.; Hutchings, J.A.; Jennings, S.; et al. Rebuilding global fisheries. Science 2009, 325, 57885. Khozin-Goldberg, I.; Iskandarov, U.; Cohen, Z. LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology.4-Azidobutylamine Biological Activity Appl.Pyranose oxidase site Microbiol. Biotechnol. 2011, 91, 90515. Martins, D.A.; Custdio, L.; Barreira, L.; Pereira, H.; Ben-Hamadou, R.; Varela, J.; Abu-Salah, K.M. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae.PMID:23319057 Mar. Drugs 2013, 11, 2259281.three. 4. 5.6.7.Mar. Drugs 2013, 11 eight. 9. ten.11.12. 13.14.15.16. 17.18.19.20.21.22.Berge, J.P.; Gouygou, J.P.; Dubacq, J.P.; Durand, P. Reassessment of lipid composition on the diatom, Skeletonema costatum. Phytochemistry 1995, 39, 1017021. Alonso, D.L.; Belarbi, E.H.; Rodriguez-Ruiz, J.; Segura, C.I.; Gimenez, A. Acyl lipids of three microalgae. Phytochemistry 1998, 47, 1473483. Tonon, T.; Harvey, D.; Larson, T.R.; Graham, I.A. Lengthy chain polyunsaturated fatty acid production and partitioning to triacylglycerols in 4 microalgae. Phytochemistry 2002, 61, 154. Guihneuf, F.; Fouqueray, M.; Mimouni, V.; Ulmann, L.; Jacquette, B.; Tremblin, G. Effect of UV pressure around the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae). J. Appl. Phycol. 2010, 22, 62938. Meireles, L.A.; Guedes, A.C.; Malcata, F.X. Lipid class composition on the microalga Pavlova lutheri: eicosapentaenoic and docosahexaenoic acids. J. Agric. Food Chem. 2003, 51, 2237241. Bigogno, C.; Khozin-Goldberg, I.; Boussiba, S.; Vonshak, A.; Cohen, Z. Lipid and fatty acid composition with the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 2002, five, 49703. Khozin-Goldberg, I.; Bigogno, C.; Shrestha, P.; Cohen, Z. Nitrogen starvation induces the accumulation of arachidonic acid within the freshwater green alga Parietochloris incisa (Trebouxiophyceae). J. Phycol. 2002, 38, 99194. Yu, E.T.; Zendejas, F.J.; Lane, P.D.; Gaucher, S.; Simmons, B.A.; Lane, T.W. Triacylglycerol accumulation and profiling within the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation. J. Appl. Phycol. 2009, 21, 66981. Roessler, P.G. Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella crypti.